

Gasification and syngas potential for biomass and waste feedstocks

Vahid Shadravan, San Shwe Hla, <u>David Harris</u> CSIRO Energy

Outline

- CSIRO Energy R&D
- Decarbonisation of Australia's energy and industrial systems
 - Sustainable fuels and energy systems
 - Biomass and waste resources (sustainable hydrocarbon pathways)
 - Heavy industry and sustainable liquid fuels (syngas pathways)
- Key enabling technologies
 - Gasification and supply-chain linking challenges
- Scale and pace of transition
 - Facilitating practical industrial demonstration
 - Leveraging established technologies and infrastructure

CSIRO Energy R&D: Sustainable Energy Systems

Renewables

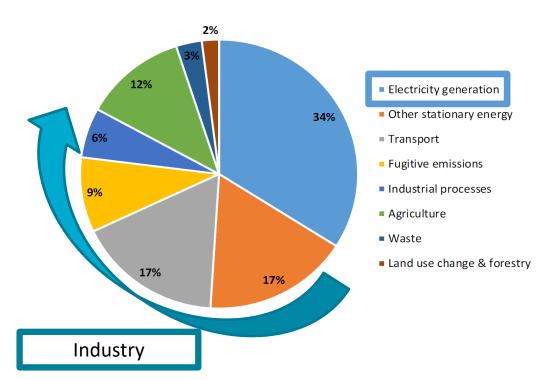
- Hydrogen and carriers, solar PV, solar thermal
- Bioenergy for power, heat, and fuels
- Energy storage technologies and systems (electrical, chemical, thermal)
- New technologies, hybrid systems, and solutions development
- Derisking new pathways and value chains

Industrial Decarbonisation

- CO₂ capture from industrial processes ... and the air
- CO₂ utilisation pathways
- Alternative fuels (e.g. SAF, Ammonia)
- Heavy industry decarbonisation
- Hydrogen systems (inc. ammonia)

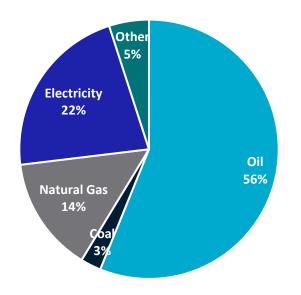
Circular Economy

- Battery second life and recycling
- Waste management, energy recovery, and advanced recycling
 OFFICIAL



OFFICIAL

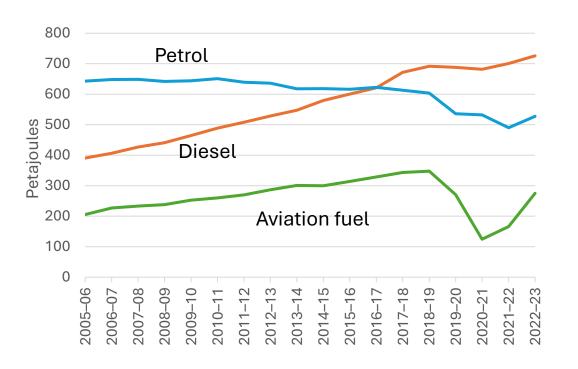
Electricity generation directly accounts for about 1/3 of Australia's CO₂ emissions...

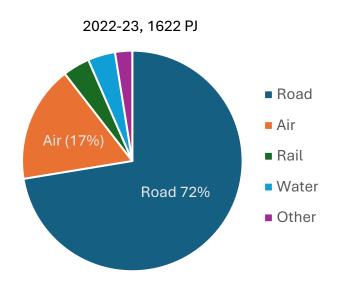


- Major efforts to decarbonise electricity *generation* sector
- 2/3 emissions from transport, agriculture and industrial sectors
 - Decarbonisation via electrification, sustainable fuels, energy storage (chemical, thermal, battery, hydro...), integration, diversification, efficiency,

Final Energy Consumption in Australia 2022-23

Total energy consumption: 3900 PJ (1083 TWh)




- **Electricity**: 22% (238 TWh)
 - Major efforts to decarbonize electricity generation sector
 - up to 34% of electricity from renewable sources
 - only 7% of total domestic energy use from renewable electricity
- **Transport**: Single largest sector (41%, 1.5% electric)
 - Refined oil & LPG imports: (1846 PJ, 47%)
 - Crude oil imports: (626 PJ, 16%)
- Major expansion of low emissions power and sustainable fuels essential across all sectors

NB: 1 PJ ~ 0.278TWh (278GWh)

Australian Transport Fuel consumption (PJ)

 90% of all Australian liquid fuel is imported

Biomass/Waste Resources in Australia

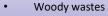
Australian Biomass and Wastes Resources

AGRICULTURAL BY-PRODUCTS/RESIDUES

- Wheat straw
- **Barley straw**
- Canola straw
- Sugarcane trash
- Oat straw Rice straw
- Cereal stubble
- Cotton stalks

- Animal farm manure
- Fish farm residues

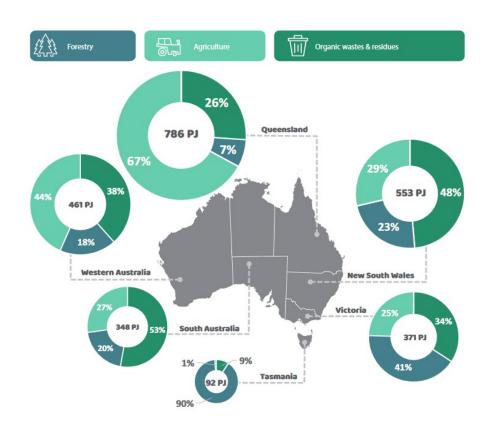
FORESTRY BY-PRODUCTS/RESIDUES


- Top stem
- Branch
- Bark
- Leaves/twigs

INDUSTRY-PROCESSING BY-PRODUCTS/WASTES

- Wood chips
 - Sawdust → wood pellets •
- Bagasse

- Rice husk
- Cotton gin
- Macadamia nuts

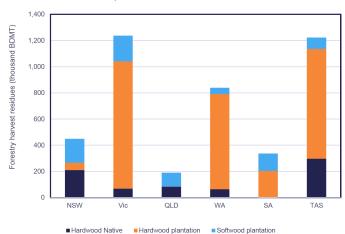


WASTES

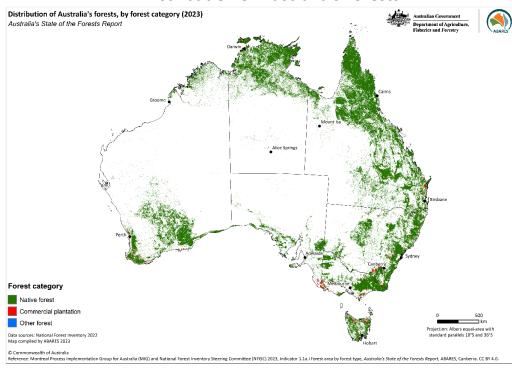
- Municipal Solid Waste (MSW)
- Commercial and Industrial Waste (C&I)
- Construction and Demolition (C&D)
- Green Wastes and Biosolids

Australia's bioenergy resource 'potential'

- Total 2,600 PJ per year
- 40% of Australia's current primary energy supply
- 10 times current bioenergy production

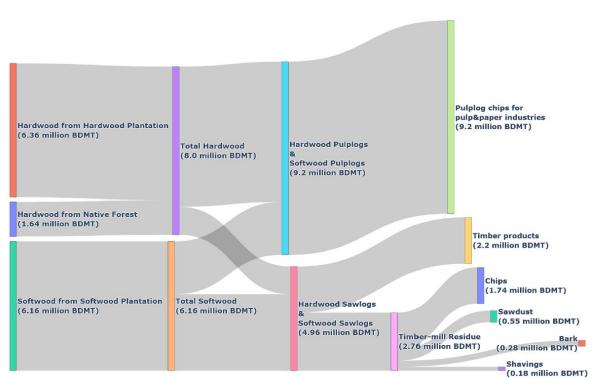

Source: ARENA Australia's Energy Roadmap, 2020

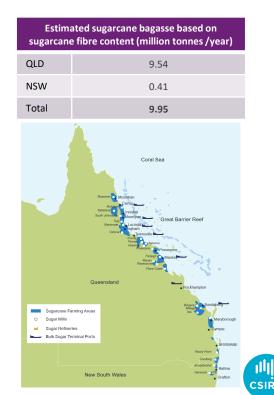
Forestry By-products/Residues


Understanding Harvest Residues

	Timber Products	Forest residue proportion by type			
		Cone/ Stump	Bark	Branches	Needels/ Foliage
Softwood	81.2%	1.9%	0.8%	12.2%	3.9%
Hardwood	42.5%	10%	7.5%	34%	6%

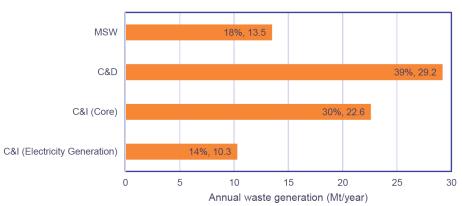
Estimated Quantities of Harvest Residues

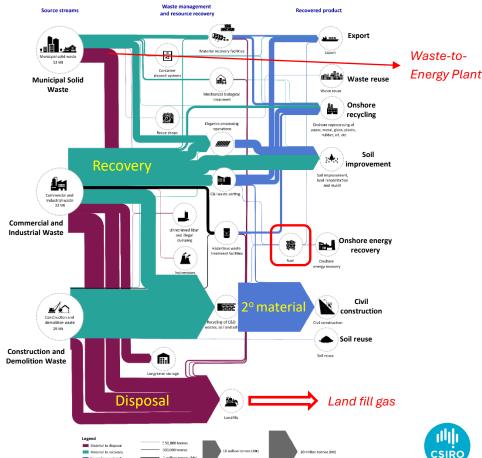

Distribution of Australia's Forests



Industry-processing By-products/Wastes

Wood and Timber Industry


Sugar Industry



Wastes

Current management and utilisation of wastes

Australian Waste Streams (~75Mtpa)

Hazardous waste to treatment

CSIRO Capabilities in Biomass/Waste Gasification Research

Biomass/Waste to Bioenergy Routes

Feedstocks

- Agricultural wastes
 - Crop farming
 - Animal farming
- Forestry wastes/by-products
 - Stem, branch, bark, mixed
- Industrial processing wastes
 - Sugar industry
 - Timber industry
 - Rice/Wheat industry
 - Paper industry
 - Cotton industry
- Urban wastes
 - MSW
 - Biosolids
 - Green wastes
 - C&D waste...

Technologies

- Thermochemical Conversions
 - Combustion
 - Gasification
 - Pyrolysis
- Biological Conversions
 - Anaerobic digestion
 - Dark fermentation
 - Photo fermentation
 - Electrochemical

Products

- Heat (steam)
- Power (steam, gas, combined cycle)
- Syngas
- Liquid fuels:
 FT products (diesel, petrol, aviation fuel),
 methanol, ethanol
- Bio-char
- Bio-gas
- Bio-oils
- Methane (SNG)
- Fertilizers, Chemicals
- Hydrogen...

Challenges for biomass and bioenergy

- Issues with nature of biomass
 - Understanding of chemical and physical characteristics of biomass and wastes
 - Dispersed availability of biomass and low energy density
 - Transportation and Storage
 - Feedstock preparation (incl blending, multiple and mixed feedstocks)

Technical Issues

- Technology dependent
 - Tars
 - Gas cleaning
 - Plant efficiency
 - Scaling up
- The difficult phase between demonstration and commercial application
 - Opportunity to collaborate internationally
- Markets for biomass gasification/conversion have been highly dependent on niche applications
 - New challenges in application to large scale industries (global oil and gas sector scale)

TUF fixed bed gasifier test facility

CSIRO Biomass & Waste-to-Energy Research

Feedstocks

Forestry Waste

Agricultural Residues

Urban Waste

Industrial Process Waste, C&D etc

Science & Research Areas

Understanding of biomass:Fundamental Chemical analysis

Gasification reaction science: devolatilisation, char formation, heterogeneous kinetics, high temperature processes

Inorganic chemistry: slag formation and flow; mineral matter and trace element transformations, speciation, and behaviour; chemistry of residues and ash

Modelling: Gasifier, process models, Techno-economic, LCA

Scale: Technical and pilot-scale studies of feedstock behaviour

Applications

Supporting pilot-scale R&D and commissioning studies

R&D in support of technology development

Matching feedstocks to gasifiers, feedstock requirements

Supporting gasifier design, optimisation, troubleshooting

Developing solutions for remote or off-grid applications

Gasification experience, facilities & capabilities

Biomass Gasifier (Fixed bed)

Wire-mesh reactor

Fixed bed reactor

Slag viscosity testing

Pressurised TGA

Biomass Gasifier and Syngas Processing

- Fixed-bed gasifier suitable to process different biomass and waste.
- Multiple stage syngas cleaning and conditioning.
- Capabilities to upgrade syngas.

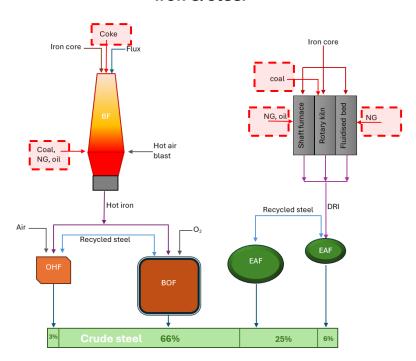
Biomass/waste feed rate:

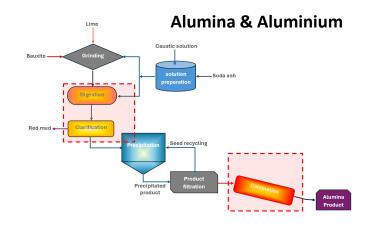
 $50 - 70 \, kg/h$

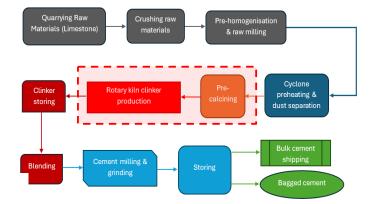
Raw syngas production rate:

 $80 - 140 \text{ Sm}^3/\text{h}$ (100 - 170 kg/h)

Temperature: 900 – 1100 °C

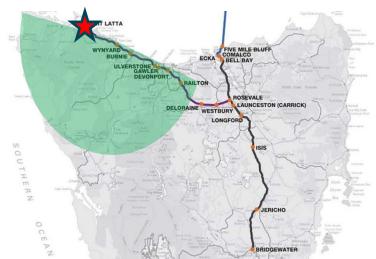


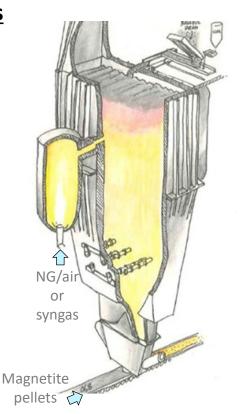

Biomass/Waste-Derived Syngas for Heavy Industries


Potential Applications in Heavy Industries

Iron & Steel

Cement & Lime





Case Study 1: Magnetite Pelletising Plant

Using syngas from gasification of <u>forestry biomass</u> as fuel for <u>pelletising furnace</u>:

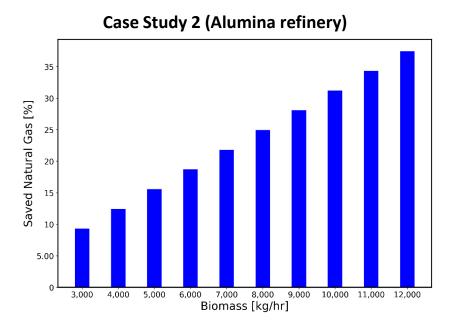
- Local biomass supply chain
- Gasifier and furnace modelling and integration
- Emission reduction evaluation

Case Study 2: Alumina Refinery

Using syngas from gasification of <u>forestry biomass</u> as fuel for <u>alumina calciner</u>:

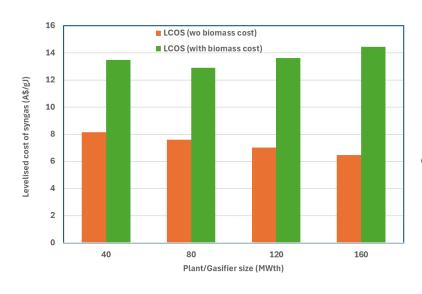
- Local biomass supply chain
- Gasifier and furnace modelling and integration
- Emission reduction evaluation

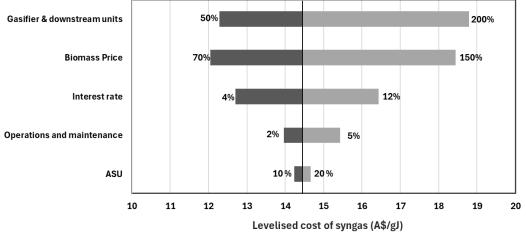




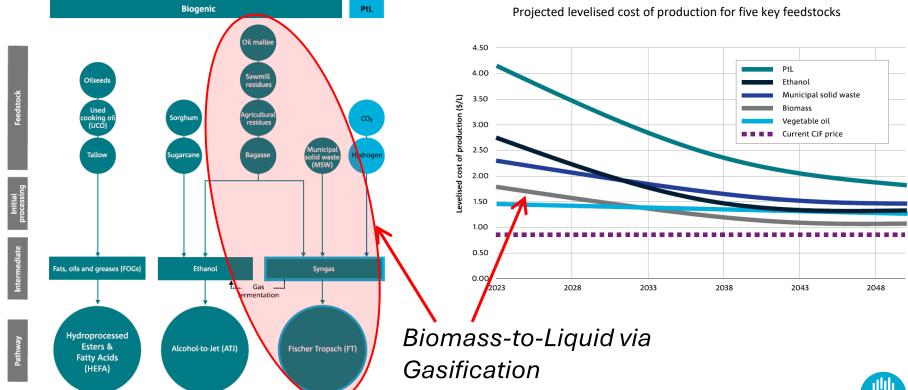
Natural Gas Reduction vs Biomass Utilisation

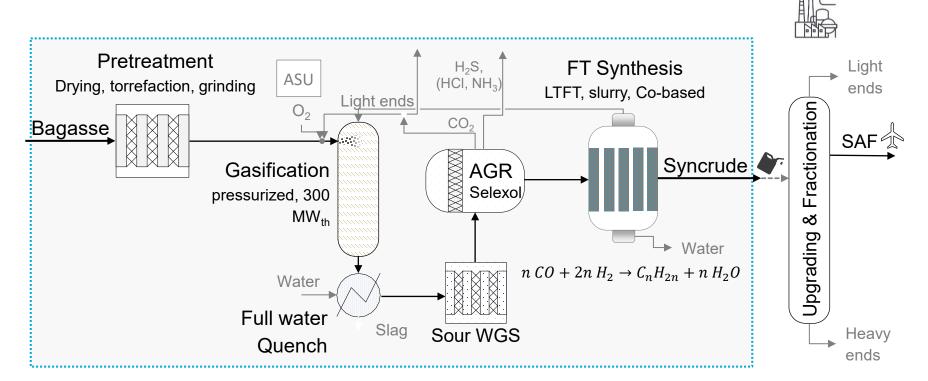
Estimated reduction in natural gas consumption based on varying amounts of forestry residue biomass, <u>up to</u> the maximum available biomass for each case study.





High Level Economic Study for Case Studies

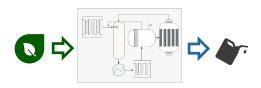


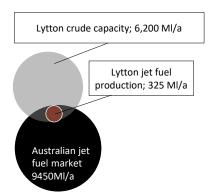


Biomass/Waste to Low Carbon Liquid Fuels — e.g., SAF

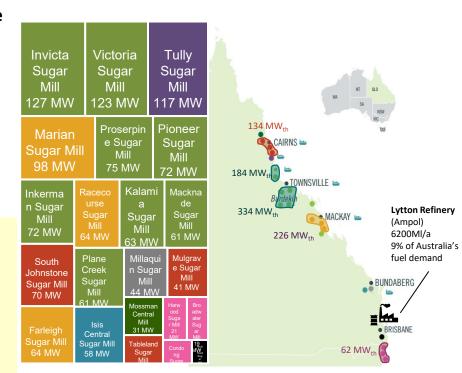
Identified SAF Production Pathways

Process Modelling Bagasse to Syncrude via FT



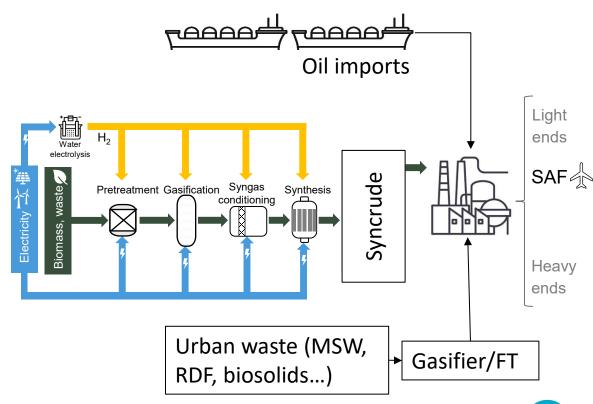


SAF Potentials in Queensland from Sugar Cane Residues


QLD's sugar industry produces ~ 2.1 Mt_{dry}/a surplus bagasse

Product yield: 0.166 $t_{\text{fuel}}/t_{\text{Biomass,dry}}$

- Fuel production potential from Qld surplus bagasse using BtL: 440 Ml_{FT fuel}/a
- ~75% of QLD's surplus bagasse could substitute Lytton's jet fuel production
- All of QLD's bagasse
 (~10Mtpa or ~1320 Ml_{FT fuel}/a)
 could substitute:
 - ~10-14% of Australia's jet fuel (9450MI/a)
 - ~ 70-90% of QLD's jet fuel (~1500-2000 Ml_{jet fuel}/a)



Transitioning refinery feedstock

- Challenge is to transition global petroleum industry to sustainable products
- Goal is to transition feedstocks
 - Focus on feedstock consolidation, preparation, gasification
 - Downstream (syngas) chemistry remains essentially the same
 - Syncrude can be a universal (transportable) intermediate
- Leverage global infrastructure capacity and knowhow
 - Pilot and demo projects
 - Commercial trials
- International syncrude export/import markets
- Scope for new and niche technologies where logistics require
 - Syngas to alcohol, gasoline etc mature
 - Power to fuels integration etc (eg Sasol ecoFT)

Progressing sustainable energy opportunities

- Sustainable biomass and renewable energy systems are capable of leveraging existing technologies and infrastructure to support cross-sector decarbonisation goals at scale
- Existing heavy industries and technologies could integrate renewable feedstocks
 - Alignment of resources and scale is key
 - Replacement of fossil fuels with sustainable syngas
- Sustainable hydrocarbon fuel supply chains are critical in key sectors (eg aviation)
 - The Australian biomass and waste sectors are well placed to support initial stages of transition through consolidation and synergistic development of biomass and waste to fuels systems
 - Opportunities to leverage with other agricultural industries, MSW, biosolids and urban waste streams
 - Opportunities for syncrude industry to utilise existing global refining capacity
- National and international partnerships are needed to facilitate research, development, demonstration and deployment

Thank you

Vahid Shadravan

Vahid.Shadravan@csiro.au

San Shwe Hla

San.Hla@csiro.au

David Harris

David.Harris@csiro.au

CSIRO Energy

