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Source: MIT Analysis, NSRDB, ERCOT, P. Brown
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Daily variability of wind and solar resource in Texas 
relative to load in 2014 

Clean and Sustainable, but Intermittent 

Renewable Energy Sources 
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Store Large-scale energy as a chemical form
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Source: MIT Analysis, NSRDB, ERCOT, P. Brown
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Why Ammonia? –Ammonia Demand Forecast

Fertilizer, 
Chemicals

CO2-free fuel

Hydrogen Carrier

Source: Innovation Outlook: Renewable Ammonia — University of Twente Research Information (utwente.nl), Hydrogen Sulfide Fertilizer Spray - Free photo on Pixabay,  
TradeWinds (tradewindsnews.com), Haber-Bosch process – nh3 fuels, Hydrogen Central (hydrogen-central.com), Missing link for solar hydrogen is... ammonia? (phys.org)

From Fertilizer and Chemicals to Future Sustainable Fuel
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How Do We Make Ammonia?

Renewable energy-based Process: 
without CO2 emission
(ex. Electrochemical Process)

Fossil fuel-based Process: 
with CO2 emission 
(Haber-Bosch Process)
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N2 + 3H2 à 2NH3

• Centralised production
• H2 from natural gas
• >1% of global CO2 emissions

Erisman, et al Nature Geoscience 2008

N2 + 3H2O à 2NH3 + 3/2O2

• On-site on-demand production
• Potentially does not require H2
• Low efficiency: Catalyst is key

Harber-Bosch Process is highly optimized but requires significant energy overall
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Electrochemical Ammonia Synthesis

Water

Oxygen

e–

Nitrogen

Water

Ø Electrochemically driven
Ø Operates under ambient conditions

ü Simple and scalable system
ü Enables intermittent operation

Utilizing intermittent renewable energy sources to produce Ammonia

N2 + 6H+ + 6e- à 2NH3 H2O à ½ O2 + 2H+ + 2e-
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Li-mediated Electrochemical Ammonia Synthesis Pathway

NH3Li+

Protonation of N2
Li+ regeneration and 
ammonia desorption

Li+ N
N

Li0

N

N

Li-metal 
deposition

N≡N bond 
cleavage on Li

（Li-nitride formation）

Ø The reaction occurs at the in situ deposited Li metal surface
Ø Typically operates under an organic electrolyte
Ø Use hydrogen (proton) from alcohol 

EtOH
EtO-
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Li-mediated Electrochemical Ammonia Synthesis Pathway

NH3

Protonation of N2
Li+ regeneration and 
ammonia desorption

Li+ N
N

Li0

H+

（From Alcohol）

Major Challenge

Ø Dead Li (=unreacted Li) formation
Ø Competitive side reaction (H2 generation, electrolyte decomposition etc.)
Ø Consumption of alcohol during the operation

Li-metal 
deposition

N≡N bond 
cleavage on Li

（Li-nitride formation）

H
H

Li+
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Significant Improvement in Past ~10 Years

Li-NRR 
(with alcohol as 
proton source)

Aqueous NRR

Major Challenge

Ø Dead Li (=unreacted Li) formation
Ø Competitive side reaction (H2 generation, electrolyte decomposition etc.)
Ø Consumption of alcohol during the operation
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Significant Improvement in Past ~10 Years

Li-NRR 
(with alcohol as 
proton source)

Aqueous NRR

Major Challenge

Ø Dead Li (=unreacted Li) formation
Ø Competitive side reaction (H2 generation, electrolyte decomposition etc.)
Ø Consumption of alcohol during the operation

Li-NRR (with water as proton source)
Before our NEDO project (2022.11) 

But not for Li-NRR using 
water as a proton source 

a 
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Ideal Proton Source: Water
What happens if we replace alcohol with water?

→ FE drops significantly due to the competitive water reduction reaction

Lazouski, N., et al. Joule 3, 1127–1139 (2019).
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Electrochem. Commun., 104, 106488 (2019)

“Isolated” water makes 
water more stable  
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CO2-free Ammonia
Synthesis under 

Ambient Conditions

NEDO International Collaboration Scheme: Team up with Imperial

Electro-
chemistry

Chemical
Engineering

Performance
Evaluation

Device
Assembly

Solution 
Chemistry

Reaction-field 
Design

Optimized System for Li-NRR 
with water as a proton source

Theoretical 
Chemistry

Operando Analysis

Analytical
Chemistry

Novel Analysis 
techniques

Known Electrolyte
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Electrolyte Engineering Enables Use of Water as a Proton Source
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Spry, M.,…, Katayama, Y., et al. ACS Energy Letters| Volume 8 | 2023 | 1230

Precise tuning of salt and water concentration reveals the “hotspot” for ammonia synthesis

22/37



What is Happening at the Electrode-Electrolyte Interface?
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Real-time observation with operando SEIRA spectroscopy
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What is Happening at the Electrode-Electrolyte Interface?
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Under dry conditions, EtOLi (the reacted form of ethanol) is accumulated on the surface
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Spry, M.,…, Katayama, Y., et al. Energy and Environmental Science| Volume 18 | 2025 | 8414
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What is Happening at the Electrode-Electrolyte Interface?
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Under excess water conditions, EtOLi is also accumulated on the surface
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What is Happening at the Electrode-Electrolyte Interface?
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The optimal amount of water can drive the proton-mediated cycle and regenerates ethanol

Spry, M.,…, Katayama, Y., et al. Energy and Environmental Science| Volume 18 | 2025 | 8414
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”Indirect” Water Utilization Enables Ethanol Regeneration 

Water 
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tion
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Water regenerate ethanol and enable continuous ammonia production without consuming ethanol
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Performance of the Prototype Ammonia Synthesis Cell 

Gas 
IN

Gas 
OUT

Product 
trap

Electrolyte 
reservoir

Ammonia is produced continuously at a production rate of 7.2×10-9 mol sec-1 cm-2 

Ø Current Efficiency   >60% (with water as “indirect” proton source)*
Ø Potential Efficiency   ~32%
Ø Ammonia Production Rate  7.2×10-9 mol sec-1 cm-2 

Developed Gas-Diffusion type Full Cell

* The world's highest value based on our literature search 32/37
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Performance of the Prototype Ammonia Synthesis Cell 
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Highest current efficiency achieved for the Ammonia synthesis using water 

Ø Current Efficiency   >60% (with water as “indirect” proton source)*
Ø Potential Efficiency   ~32%
Ø Ammonia Production Rate  7.2×10-9 mol sec-1 cm-2 

Developed Gas-Diffusion type Full Cell

* The world's highest value based on our literature search

Before
Project
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Li-NRR
(Dry)

Current 
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Performance of the Prototype Ammonia Synthesis Cell 
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IN
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Product 
trap

Electrolyte 
reservoir

Highest current efficiency achieved for the Ammonia synthesis using water 

Ø Current Efficiency   >60% (with water as “indirect” proton source)*
Ø Potential Efficiency   ~32%
Ø Ammonia Production Rate  7.2×10-9 mol sec-1 cm-2 

Developed Gas-Diffusion type Full Cell

* The world's highest value based on our literature search 34/37
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(Dry)
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Performance of the Prototype Ammonia Synthesis Cell 

Gas 
IN

Gas 
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Product 
trap

Electrolyte 
reservoir

Next Goal: Increase the ammonia production rate while improving the efficiency

Ø Current Efficiency   >60% (with water as “indirect” proton source)*
Ø Potential Efficiency   ~32%
Ø Ammonia Production Rate  7.2×10-9 mol sec-1 cm-2 

Developed Gas-Diffusion type Full Cell

* The world's highest value based on our literature search

Future 
Target
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Towards Decentralized, Resilient, Sustainable Ammonia Production 
International collaboration accelerates the R&D for sustainable ammonia synthesis 

Ammonia electrosynthesis 
under ambient conditions

Image created by Gemini AI 36/37
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